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Abstract 

An algorithm is proposed for solving the fundamental 
equations of the wavefield for multiple-wave dynamical 
X-ray diffraction with grazing incidence and scattering 
geometry. The algorithm is developed based on the 
representation of the electric fields and wavevectors in a 
single Cartesian coordinate system with one of the axes 
in the direction normal to the crystal surface. With this 
representation, the fundamental equations of the wave- 
field can be solved as an eigenvalue-eigenvector 
problem involving a 4N × 4N scattering matrix in 
which the matrix elements are not related to the 
polarization, N being the number of waves. The 
polarization factors are absorbed in the vector compo- 
nents of the eigenvectors. This simplifies the process in 
solving the fundamental equation, avoids unnecessary 
approximations on polarization in the matrix calculation 
and makes the algorithm very generic so that it can be 
applied to multiple diffractions of all kinds, including 
grazing-angle and wide-angle geometries. The intensity 
distribution of an Umweganregung of a specularly 
diffracted wave in a polarization-forbidden state is 
calculated using this algorithm as a demonstration. 

1. Introduction 

Specular X-ray reflections by a crystal surface are 
usually not accounted for in conventional X-ray 
diffraction theory for cases where the angles between 
the incident and/or scattered wavevectors and the 
crystal surface are large compared with the critical 
angle for total external reflection. In these cases, the 
linearization of the resonance term 

(~  - K2) /~  _~ (~  - r 2 ) / r  2 _~ 2(~ h - K) /K -- eh 

(1) 

in the dispersion relation is usually adopted in the 
conventional dynamical theory (von Laue, 1931; 
Pinsker, 1978), where K and k h are the magnitudes of 
the incident wavevector K in vacuum and the diffracted 
wavevector k h inside the crystal and k h = k o + h, h 
being the reciprocal-lattice vector of the h reflection and 
k 0 is the wavevector in the incident direction inside the 
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crystal. The transformation of a system of vector 
equations to that of scalar equations is often carried 
out by introducing mutually orthogonal unit vectors *h, 
7t h and s h = kh/k h, *h and rc h being the polarization 
vectors perpendicular and parallel to the plane of 
incidence of the h reflection. As was shown by Kohn 
(1979) and many others, for N strong waves, the 
fundamental equations can be solved as an eigenvalue 
equation in a 2N x 2N scattering-matrix form, where 
the unknowns are the eigenvalues e h in the diagonal and 
the scalar products of the polarization unit vectors, say 
(~h " ~h ' ) '  (l~h" ~h ' ) '  (nh " nh ' )  . . . .  in the off-diagonal 
elements. As the modulus of the normal component s h to 
the crystal surface is small, of the order of the Fourier 
component of the crystal polarizability, Xh ~ 10--5, the 
scalar products can be obtained by assigning the origins 
of the wavevectors in the vicinity of the multiple-wave 
Lorentz point, thus reducing the error in e h. 

This process of linearization of the dispersion 
equation leaving out 2N solutions associated with 
specularly reflected and specularly diffracted waves is 
no longer valid for diffractions at grazing angles. It is 
then necessary to take into account the quadratic terms 
in the dispersion equation and the refractive indices in 
the boundary conditions. This has been done by Kishino 
& Kohra (1971) for two-beam diffractions, by Andreev, 
Gorshkov & Ilinskiy (1985), Hung & Chang (1989), 
Stepanov, Kondrashkina & Novikov (1991) and Tseng 
& Chang (1990) for some special cases, and by Colella 
(1974) and Stepanov & Ulyanenkov (1994) for a general 
case. 

The approach taken by Colella (1974) is again based 
on the introduction of unit vectors *h and nh normal to 
the wave vector k h. The solution then amounts to 
finding the eigenvalues and eigenvectors of a 4N x 4N 
scattering matrix whose unknown elements (it h • *h'), 
(ffh" /th'), (•h" ;th') are also dependent on the approx- 
imation used to obtain s h. The principal feature of the 
grazing-angle diffraction is that the range of variation of 
the normal components of s h vectors increases 
dramatically as the incident or scattered angle 
decreases and reaches (Xh) 1/2~ -- 10-2-10 -3 near the 
critical angle so that any choice of the linear 
approximation in eh will lead to errors in (it h • (th,), 
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(~h "nh,), (nh • rth,) comparable to ( X h )  1 / 2  . Consequently, 
errors in determining the amplitude values and even in 
the signs of the imaginary parts of the eigenvalues may 
occur when the latter tend to zero. This approach thus 
requires successive approximations for each root or 
group of related roots of the dispersion equation until 
the required accuracy is achieved (Gau & Chang, 
1995). This increases greatly the amount of time 
required for computations. In a modification of 
Colella's method proposed by Stepanov & Ulyanenkov 
(1994), some of the waves undergo grazing-angle 
diffraction, and the specularly diffracted waves that 
are far enough from the grazing angular position are left 
out. This approach results in a scattering matrix of size 
smaller than 4N x 4N, thus reducing, when possible, 
the computation time. This approach, however, still has 
the same disadvantage as that of Colella. 

The idea of the approach proposed here is to 
represent the amplitudes of the diffracted waves on a 
basis that would be independent of the unknown 
wavevectors k h. The amplitudes and wavevectors are 
represented in a single Cartesian system of coordinates 
related to the normal n to the entrance surface of the 
crystal. The proposed algorithm then amounts to finding 
eigenvalues and eigenvectors of the 4N x 4N scattering 
matrix whose elements are independent of any unknown 
quantities. 

the convenience of representation of results in each 
particular case. We designate the coordinates of the 
reciprocal-lattice sites in the above-mentioned coordi- 
nate system as X m, Ym, Zm, and the coordinates of the 
origins of the wavevectors as x n, y,,, z. Here, x n and y,, 
describing the position of the normal are defined by the 
angular and spectral parameters of the incident wave 
while the unknown quantity z is obtained from the 
dispersion equation. 

Substituting the Cartesian representations 

kh,, = (Xm - -  Xn) i + (Ym - Y,,)J + (Zm - -  z)k 

=-- Xmi + YmJ -Jr" (Zm - -  z)k (3) 

and 

Ehm = EXi + EYmj + EZra k (4) 

into (1), we obtain a system of 3N scalar equations. In 
matrix form, it is given by 

PE 
(C - z l )  2 + B 2 - G 2 - A B  -A(C - zI) '~ 

= -AB (C - zI) 2 + A 2 - G 2 -B(C - zl) ] 
- A ( C  " z I )  - B ( C  --  ZI) A 2 -Jr- B 2 --  G 2 ] (') × E, =0, (5) 

Ez 

2. Representing the dynamic X-ray diffraction 
equations in terms of eigenvalues and eigenvectors 

When dealing with an N-wave diffraction in grazing- 
angle geometry, the fundamental equations of wavefield 
are expressed in terms of the electric field E as 

[ ( 8 . ,  - X~)/Xqw~,. 
N-1 

= [(kh," • Ehm)/KZ]kh,. + ~_, Xhm_h Eh , (2) 
n=0 

where m = 0, 1 . . . . .  N -  1 and K -- 1/2, 2 being the 
wavelength used (see Fig. 1). Indeed, as noted by 
Hartwig (1978), for grazing-angle geometry, the 
normal components of the E h and those of the electric 
displacement D h can differ considerably, resulting in a 
signifcant error in the normal component D h. 

The tangential components of wavevectors are known 
to be continuous across the interface between two 
media. Therefore, the origins of the wavevectors 
propagating both inside and outside the crystal will lie 
along the crystal-surface normal n, assuming that the 
ends of these vectors are in the appropriate reciprocal- 
lattice sites H m. Thus, to reduce the system (2) of vector 
equations to scalar ones, we introduce the following 
Cartesian coordinate system in the reciprocal space. 
The z axis is parallel to the external normal n to the 
crystal entrance surface. The choice of the origin and 
the x and y axes is arbitrary, and is governed solely by 

where all the matrices in the system are N × N, I is the 
unit matrix, A, B, C are the diagonal matrices whose 
diagonal elements are given by amm---Xm, bmm = Ym, 
Cram = Z m, respectively, G 2 -- K2(I + F), F is the matrix 
whose elements are rgiven by fmm = Xh,_~v,y and 
nx = (E'o'E~ . . . . .  E~V-1) T '  ny = (EY'EYl . . . . . .  N - l ]  , 

E z = (E~),EZl . . . . .  E~v_l) are the vector columns of 
unknown components of electrical vectors and the 
superscript T means transpose. We note that A, B, C 
matrices are commutative. 

Khml / 

0 ~ H , ,  

Fig. 1. Schematic representation of multiple X-ray diffraction in a 
crystal plate. 
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The unknown z is obtained from the equation 
det P = 0, whose left-hand side is a 4Nth-order poly- 
nomial. 

To reduce the matrix equation (5) to an eigenvalue- 
eigenvector problem, the following transformations are 
made. We now introduce new variables 

Ev = (C - zI)E x - A E z  
(6) 

E w = ( C  - z l ) E y  - -  BE z. 

By substituting E v and E w into system (5), we obtain an 
extended system of size 5N x 5N: 

0 i 0 A )() 
C - Z I  0 - I  0 B 

| B 2 - G  2 - A B  C - z I  0 E~ : O, 
A 2 - G 2 0 C - zI 0 E~ 

\ -A(C - zI) -B(C - zI) 0 0 A 2 -4- B 2 -- G 2 E z 

(7) 

where 0 is the zero matrix. We then eliminate the 
expression ( C -  zI) in the fifth row of system (7) by 
multiplying the first row to the left by the matrix A, the 
second row by B, then adding the result to the fifth row. 
Similarly, we eliminate the off-diagonal elements in the 
fifth column and, finally, obtain 

(Q - z I 4 ) E  4 - 0 
(8 )  

E z = - G - E ( A E v  + BEw), 

where 

C 0 A G - E A  - I A G - 2 B  

) 
0 C B G - 2 A  B G - 2 B  - I 

Q = B 2 - G 2 - A B  C 0 ' 

- A B  A 2 - G 2 0 C 

(9 )  

the column E 4 = [(Ex) r,  (Ey) T, (Ev) r, (Ew)Z] r contains 
no normal components E z and 14 is the 4N x 4N unit 
matrix. As is seen from the first matrix equation of 
system (8), the problem has been reduced to finding the 
eigenvalues zj and eigenvectors of the Q matrix, whose 
elements are independent of z. The first and second N 
components of the eigenvalues are, within the accuracy 
of the proportionality constants cj, the x and y 
components of the amplitudes of the diffracted waves. 
These proportionality constants can be found from the 
boundary conditions. Then, the term E z can be 
calculated from the second equation of the system (8) 
using the third and fourth N components of the 
eigenvector. 

For some special diffraction cases, a simplified 
solution of the dynamical X-ray diffraction equations 
is possible. Consider the case where all the Z m 
( m -  0, 1 . . . . .  N -  1) of the reciprocal-lattice sites are 
equal. In this case, all the reflecting planes will be 
normal to the entrance surface. Without loss of 
generality, we assume Z m - 0 .  We eliminate the off- 
diagonal elements in the third row of the system (5) by 

multiplying the first row to the left by the matrix A, the 
second row by B, then add the result to the third row 
multiplied by - z l .  We then eliminate the off-diagonal 
elements in the third column and obtain 

( U  + Z212)E2 = 0 

E z = Z - I ( G - 2 A G 2 E x  + G - 2 B G 2 E y ) ,  

where 

AG_2AG 2 
U =  - A B + B G - 2 A G  2 

(10) 

- A B  + AG-2BG 2 
A e q- BG-2BG 2 _ G 2 ) ' 

(11) 

I 2 is the 2N x 2N unit matrix and the column 
E 2 = [(Ex) T, (Ey)r] T. Thus, the solution of the equations 
in this particular case is reduced to finding the 
eigenvalues - z  2 and eigenvectors of the 2N × 2N 
scattering matrix U. The solutions are seen to be 
symmetrical with respect to z -- 0. 

3 .  B o u n d a r y  c o n d i t i o n s  

By making use of the continuity of the normal 
component and the tangential component of the electric 
field E r,  the electric displacement D z and the magnetic 
field H (/z = 1) and invoking the relations 
D h --  E h 4- C h '  Xh-h 'Eh ' and H h = [k h X Eh] /K  , o n e  

obtains the following equations for the entrance 
(l = 1) and exit (l = 2) surfaces of a plane-parallel 
crystal plate of thickness t: 

4N 

E 
j= l  

4N 

E 
j= l  

~" ml -~- EXl ~ml 

y (o) ,y 
= EYml flgml Cj EYmjl~jl EY~ml "3 t- 

4N (EZm j N-1 ) : E • m l - 4 - E m l q g m l  
j= l  n=0 

4N 

E Cj(ZmIE,Ynj -- ymEZmj)~rjl 
j= l  

E z (0) l 2 y 2 = ( K 2 E '  - Ym )~ml + [(-- 1) KmE~l - YmEml]qgml 
4N 
C cj (xzEZj - ZmjE~)l~rjl 
j= l  

= (xmEZ __ z x CO) z K~m E )&,,,t + [x,,,E~ - ( -  1)lKZE~l]~Oml 
4N 
C Y x _ 

j= l  

(y,,E x x E y~,~<°) ~ ~' --- -- -- XmE~ml]qgml, ( 1 2 )  m ]'ml -F [YmEml 

where 

{ 1  f o r m = 0 }  
o(0) if l - 1 
Oml "- -  0 for m # 0 (13) 

0 if l - - 2 ,  
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E x, EY, E z are the vector components of the electric field 
of the incident wave. Exl, EYl, EZl and Ex2, EYm2, EZm2 
are the vector components of the electric field in 
front of and behind the crystal, respectively, where 
KZm : --[ K2 -- (X2m -1- Y2m)]l/2, ~fjx : ~gml : 1, ~rj2 : 
exp(2zriZmjt), qOm2 = exp(2rciKZm t) and Zmj : Z m - Zj. 
The propagation directions inside and outside the crystal 
are shown in Fig. 1, where the K's  are the wavevectors 
outside the crystal and 0 and H m are the reciprocal- 
lattice points of the direct and the H m reflection, 
respectively. The normal components of the wave 
vectors of the outgoing diffracted waves at the entrance 
surface are given by K~, 1 = -KZ,  whereas at the exit 
surface they are given b~ K~,m2 = KZm . 

The last equation of the system (12) is seen to be a 
linear combination of the first two. For X-rays, the 
condition of continuity of the normal components of the 
magnetic inductions follows from the condition of 
continuity of the tangential component of the eclectic 
field. We are thus left with 5N linearly independent 
equations for the entrance and the exit surfaces. The 
system (12) of linear equations contains 4N unknown cj 
and 3N unknown components of the electric fields of the 
diffracted waves in front of the crystal and 3N unknown 
components behind the crystal. We thus obtain a system 
of 10N equations with I0N unknowns. 

It is to be noted that, in the approach of Colella 
(1974), a system of only 8N equations with 8N 
unknowns is involved in the boundary conditions. This 
is because 2N longitudinal components of the vectors 
D h of diffracted waves outside the crystal are not 
considered. The proposed algorithm of this paper, 
however, gives a simple way to reduce a system (12) of 
10N equations to a system of 4N equations, containing 
only constants cj as the unknowns. This is accomplished 
by eliminating the unknowns in the right-hand sides of 
the fourth and fifth equations of the syste m (12) by 
multiplying the second equation with (-1)t+IKZ m, the 
third by Ym, and adding the result to the fourth. We thus 
end up with the system 

E Cj [Zmj- (--1)lKZm]EX j + x m E Xhm-hnEZnj l 
j = l  n=0 

z x (0) = 2K~E ~,,,l 
4N { N-1 } 

[Zmj l z Y j = l  Cj - -  ( - - 1 )  KZm]E~j -1- Ym n=0 ~ Xhm-hnF-*ZJ l~rjl 

z (0) = 2K~,EY~m~. (14) 

Substituting the determined constants cj from (14) into 
the system (12), we finally obtain the vector components 
of the electric field of the diffracted waves. 

Computational solutions for the systems (12) and (14) 
are only possible for relatively thin crystals, when no 
overflow in the exponential functions ~Pj2 occurs. To 
circumvent this overflow for thick crystals and for semi- 

infinite crystals (t ~ cx~), we introduce a new variable 

{ cfPj2 for Im zj > 0 
(15) PJ = cj for Im zj < O. 

The boundary conditions, (12) and (14), remain valid, 
except that now cj are replaced by pj and ~jl a r e  

replaced by ~jl, which are defined as 

{ ~j f o r l m z j > 0 }  i f l = l  
1 for Im zj < 0 (16) 

~jz= 1 f o r I m z j > 0 }  
~j for Im zj < 0 if 1 = 2 ,  

where ~j = exp[sign(Imzj)2rcizjt]. The systems thus 
obtained are free from the limitations on I~jl inherent 
in (12) and (14), which decrease as the crystal thickness 
increases, and for a semi-infinite crystal [~/[ = 0. An 
essentially similar approach was proposed earlier by 
Kohn (1979). 

4. Umweganregung o f  a s p e c u l a r l y  d i f f r a c t e d  w a v e  
at a f o r b i d d e n  p o l a r i z a t i o n  s tate  

During the dynamical multiwave X-ray interaction, 
Umweganregung (Renninger, 1937) and Aufhellung 
(Wagner, 1923) may occur simultaneously or sepa- 
rately, appearing as a diffracted wave intensity increase 
or decrease, respectively, as compared with the two- 
wave case. For weak or structure-forbidden reflections 
with small values of the structural factors, Aufhellung in 
the multiple-wave region is suppressed, whereas 
Umweganregung becomes more pronounced owing to 
several consecutive allowed reflections. For a polariza- 
tion-forbidden reflection, Umweganregung was pre- 
dicted and experimentally observed by Kshevetsky, 
Stetsko & Sheludko (1985) for an allowed reflection 
using n-polarized X-rays, with the electric field vector 
lying in the reflection plane and the diffraction angle 0 
close to :r/4. The diffracted beam intensity is then close 
to zero, since it is proportional to cos 20. Although the 
above-mentioned phenomena were originally observed 
for the conventional wide-angle X-ray diffraction, 
similar phenomena can be expected to occur for 
specularly diffracted waves of grazing-incidence multi- 
ple-wave diffraction. Evidence for this is the fact that, 
in the two-wave case, the amplitudes of both diffracted 
and specularly reflected waves depend in a similar way 
on the structure and polarization factors. A theoretical 
study of Umwegunregung in grazing-incidence geome- 
try involving the nearly forbidden reflection has been 
reported by Tseng & Chang (1990). 

In the present section, the calculation results are 
reported for the Umwegunregung involving specularly 
diffracted waves with forbidden polarization in an 
Si(000,400,264) diffraction. The calculations are 
made for the three-wave diffraction case in which all 
the reflecting planes are normal to the entrance surface, 
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which is parallel to the (112) planes (see Fig. 2) and all 
the waves propagate with small angles with respect to 
the entrance surface. The wavevectors in Fig. 2 have 
the same meaning as those in Fig. 1 and n is the vector 
normal to the crystal surface. The angles between the 
wavevectors K and the surface are ~o. The points 0, H 1 
and H 2 shown in Fig. 2(b) represent_the reciprocal- 
lattice points of the 000, 440 and 264 reflections, 
respectively. 

An important feature of multiple-wave interaction of 
grazing X-ray beams is its coincidental nature. This is in 

In view of the coincident nature of the multiple-wave 
diffraction, the calculations are carried out for different 
incident wavelengths. The exact multiple-wave diffrac- 
tion condition is that the multiwave Lorentz point 
should be in the plane of configuration mentioned. The 
wavelength satisfying this condition is given by 
2 M = 1.34380A and the diffraction angle by 
044o = 0.77519 rad, which is close to ~r/4. The spectral 
parameter is taken to be S = (2 - 2M)/2 M. Figs. 3 and 4 
show the variation of angular distributions of the 

contrast to the well known diffraction cases in which at 
least three-wave diffraction is of a systematic nature / ~ \ s  s =-7 × 10 -6 
(see, for example, Chang, 1984). The reason is that in 
the latter no consideration was given to the orientation 0 3~ 
of the entrance surface. For grazing-incidence diffrac- --'-" 
tion, however, this orientation becomes a significant 

~ 2 factor in determining the coincidence of the multiple- _~ 
wave interaction. It should be noted, however, that a < 
systematic multiple-wave diffraction can be realized for - 1 
grazing beams as well if the plane of configuration 
containing all the reciprocal-lattice points involved is 
normal to the crystal entrance surface. .. 

-1 0 1 
(a) 

/ / / / / 1 S = O  

5 
- 1  ' i 

, | ! 

(a) 

(6) 

Fig. 2. Geometry of the three-wave X-ray diffraction in (a) real space 
and (b) reciprocal space. The vector n is along [1 i2]. 

- o 1 2 

(b) 

/\\ 

-| I i 
0 1 2 3 

Angle ~000 o (") 

(c) 

Fig. 3. Reflection coefficient R44o(~00o0, ~O44o) for a-polarized incident 
radiation. Levels 1-5 correspond to R ~ o = 0 . 3 ,  0.2, 0.1, 
5 x 10 -2, 10 -2, respectively. 
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reflection coefficient R44o(9ooo, 9440) for a specularly 
diffracted wave (440) in the vicinity of S = 0. The 
coordinates are chosen at the intersection of the normal 
n and the plane of the configuration, so that the one- 
wave azimuthal axes 9000 and 9440 (see Fig. 2b) pre- 
serve their directions and scales. The origins 
(9000 = 0, 9440 = 0) along the azimuthal axes are chosen 
so as to correspond to the normal n passing through the 
multiple-wave Lorentz point. When the normal n passes 
through the bisector of the angle between the axes 9000 

[ [ ~ N ~  ~ 7  S = - 7 x 1 0 - 6  

< -1 

0 1 

(a) 

I 
? 

-1 4 8 " 

1 

3 
< 

o 

o 1 2 3 
Angle ~ooo (") 

(c) 

Fig. 4. Reflection coefficient R44o(~Oo~, ~o44o) for rr-polarized incident 
radiation. Levels 1-8 correspond to R44 o = 5 x 10 -2, 10 .2 , 
5 x 10 -3, 2 x 10 -3, 10 -3, 5 x 10 -4, 2 x 10 -4, 10 -4, respectively. 

and 9440, the grazing angles ~0o0 and ~440 will be equal. 
From Figs. 3 and 4, it is evident that, for the cr 
polarization, the distribution of R40 o varies slightly as 
the spectral parameter S changes from - 7  x 10 -6 to 0 
and then to +7  x 10 -6, while, for the rr polarization, 
the difference in R4o is considerable between S = 0 and 
S-- - t -7  × 10 -6. These distinct differences are mainly 
due to the difference in the polarization direction with 
respect to the positions of the reciprocal-lattice points. 

The estimated bandwidth of the multiple-wave 
interaction is of the order of Xh ~ 10--5" Therefore, an 
experimental observation of multiple-wave diffraction 
would require a highly monochromatic incident beam. 
However, the measurement of the angular distribution 
of a specularly diffracted wave for the multiple-wave 
case would still involve considerable difficulties, since 
such a distribution would be qualitatively indistinguish- 
able from that for the two-wave case. To overcome this 
difficulty, we propose the method of spectral scanning 
of the multiple-wave region. One practical way of 
spectral scanning of the multiple-wave region is as 
follows. Consider a highly monochromatic beam 
incident on the crystal surface at a fixed angle 4~0oo 

c 

2.3 

0 1 
(a) 

0 
- 0 1 

s (10 -5) 

(b) 
Fig. 5. Reflection coefficient R44o(S, ~P'ooo) for (a) ~-polarized and (b) 

:r-polarized incident radiation. Levels 1-10 correspond to 
R44 o = 0.3, 0.2, 0.1, 5 × 10 -2, 2 x 10 -2, 10 -2, 5 × 10 -3, 
2 x 10 -3, 10 -3, 5 x 10 -4, respectively. 
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within the total-external-reflection region and well 
collimated within the incident angle %00 only. The 
actual beam non-monochromaticity and angular diver- 
gence were not taken into account in the present 
calculation. The incident angle is taken to be 
(Pooo = (IX0oo- X4401) 1/2, for which specular reflection 
coefficient of a diffracted wave in the two-wave case 
will be the largest. Fig. 5 shows the resulting spectral 
and angular distribution R44o(S, ~P'ooo). The origin of the 
angular coordinate ¢P~x~ is seen to be shifted with respect 
to that of ~O0o o, so that ~o~00 = 0 for (P440 = 0. In the 
above coordinates, the region of three-wave interaction 
is seen to exhibit two directions, one parallel to the 
spectral axis S and the other inclined to it at some angle. 
A divergence from the S - 0 position corresponds to a 
transition from the three-wave into the two-wave 
region. Fig. 6 shows semi-integral curves R440(S)= 
fR44o(S, ¢p~x~)d~o~o. The two-wave diffraction intensi- 
ties are shown by a dotted line. The shape of the upper 

1.0 - - m ~ D  

0.8 

1.2 

B 

! I I 
-1 0 

(a) 

0.04 

0.02 

0.0 -~ I ., I 

-1 0 1 
S (10 -5) 

(b) 

Fig. 6. Semi-integral curves R44o(S ) for (a) a-polarized and (b) 
~r-polarized incident radiation. Values are given in units of R440(S) 
for the two-wave case for o'-polarized incident radiation. 

curves is characteristic for three-wave diffraction 
profiles observed in the Renninger experiment arrange- 
ment. For the allowed reflection of cr polarization (see 
Fig. 6a), the curve exhibits two regions, one with 
higher (Umweganregung) and the other with lower 
(Aufhellung) intensity as compared with the two-wave 
case. For the forbidden reflection by zr polarization (see 
Fig. 6b), only the higher-intensity region, i.e. a peak, 
occurs. 

To conclude, we have proposed a new algorithm that 
can be used to describe multiple-wave dynamical X-ray 
diffraction at grazing-angle geometries and have 
demonstrated the capability of this algorithm in 
calculating the multiply diffracted Umweganregung 
reflectivities in a polarization-forbidden situation and 
at grazing incidence and scattering angles. This 
algorithm is quite general and is not limited to grazing 
angle but applicable to wide-angle geometries. More- 
over, the spectral scanning technique proposed in this 
paper may facilitate the development of a method for 
determining lattice parameters and phase invariant of 
structure-factor multiplets for thin crystal-surface layers 
utilizing multiple-wave grazing-incidence X-ray diffrac- 
tion. 
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